
J. Fluid Mech. (2001), vol. 438, pp. 11–39. Printed in the United Kingdom

c© 2001 Cambridge University Press

11

Computations of fully nonlinear
three-dimensional wave–wave and wave–body

interactions. Part 1. Dynamics of steep
three-dimensional waves

By M I N G X U E†, H O N G B O X Ü‡, Y U M I N G L I U
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We develop an efficient high-order boundary-element method with the mixed-Eulerian–
Lagrangian approach for the simulation of fully nonlinear three-dimensional wave–
wave and wave–body interactions. For illustration, we apply this method to the study
of two three-dimensional steep wave problems. (The application to wave–body in-
teractions is addressed in an accompanying paper: Liu, Xue & Yue 2001.) In the
first problem, we investigate the dynamics of three-dimensional overturning breaking
waves. We obtain detailed kinematics and full quantification of three-dimensional
effects upon wave plunging. Systematic simulations show that, compared to two-
dimensional waves, three-dimensional waves generally break at higher surface eleva-
tions and greater maximum longitudinal accelerations, but with smaller tip velocities
and less arched front faces. For the second problem, we study the generation mech-
anism of steep crescent waves. We show that the development of such waves is a result
of three-dimensional (class II) Stokes wave instability. Starting with two-dimensional
Stokes waves with small three-dimensional perturbations, we obtain direct simulations
of the evolution of both L2 and L3 crescent waves. Our results compare quantita-
tively well with experimental measurements for all the distinct features and geometric
properties of such waves.

1. Introduction
Steep overturning three-dimensional waves are ubiquitous in the ocean environment.

The dynamics of such waves are of importance in the consideration of extreme
slamming loads and wave over-topping on ships and marine structures, energy and
momentum transfer from surface waves to currents, and turbulence mixing of the
upper marine layer. The understanding and modelling of three-dimensional steep or
breaking waves is thus of fundamental and practical interest in ocean science and
engineering.

In this paper, we develop an effective and robust computational capability based on
a mixed-Eulerian–Lagrangian (MEL) approach using a high-order boundary element
method to simulate fully nonlinear three-dimensional wave–wave and wave–body
interactions. To illustrate the usefulness of the method and to understand steep
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three-dimensional wave dynamics, we apply the numerical method to study two
three-dimensional steep wave problems: (a) the dynamics of three-dimensional wave
breaking; and (b) the nonlinear mechanism for the development of crescent waves.
The application of this method to nonlinear wave–body problems is considered in an
accompanying paper: Liu, Xue & Yue (2001).

For wave breaking, existing experimental and computational studies tend to be
mainly for the two-dimensional problem (see Rapp & Melville 1990 for a review of
experiments; and Banner & Peregrine 1993, and Tsai & Yue 1996 for reviews of
numerical simulations). For simulation of steep two-dimensional waves, a seminal
work was Longuet-Higgins & Cokelet (1976), who developed the mixed-Eulerian–
Lagrangian (MEL) approach using a boundary-integral equation (BIE) formulation.
Since then, a number of improvements/extensions have been made, notably Vinje &
Brevig’s (1981) development of the Cauchy-integral formulation and Dold’s (1992)
treatment of time evolution terms. The understanding of two-dimensional breaking
waves was improved by New, McIver & Peregrine (1985) who performed detailed
computations, Dommermuth et al. (1988) who obtained quantitative comparisons to
breaking wave measurements in a tank, Yao, Wang & Tulin (1994) who considered
wave-group dynamics; and Longuet-Higgins & Dommermuth (1997) who examined
the role of crest instabilities.

Despite these advances, the fundamental issue of how and why a wave breaks
remains an open question (see e.g. Longuet-Higgins 1996). A number of different
criteria for the onset of wave breaking have been suggested. Examining breaking
of waves due to converging sidewalls, submerged disturbances, and wave focusing,
Schultz, Huh & Griffin (1994) suggested that the root-mean-square potential energy
rather than the classical wave steepness is a better and more reliable criterion. The
generality of this criterion appears to be limited, however, since it is known that,
in some cases, details of an initial profile perturbation (which does not substan-
tially change the potential energy) may determine whether the wave subsequently
develops into either an overturning or non-breaking wave (e.g. Longuet-Higgins &
Dommermuth 1997). (The present simulation of three-dimensional crescent waves
offers another example, see § 5.2.) From modulated wave groups, Yao et al. (1994)
observed that waves start to break when the particle velocity at the crest exceeds
the wave group velocity. The generalization of this criterion is not easy since the
group velocity is not well defined for general nonlinear waves. Based on the breaking
behaviour of modulated wave trains, Banner & Tian (1998) found a threshold for
the rate of half-wavelength-averaged momentum and energy, which can be used to
separate breaking from recurrence of steep waves. The application of this criterion
to general wave fields is also not straightforward. Generalization of these two-
dimensional results to three-dimensional waves has not been achieved. For irregular
waves, Snyder & Kennedy (1983) used the vertical-acceleration criterion to develop a
geometro-statistical model for white caps. But, the threshold value of the free-surface
vertical acceleration is determined empirically without basic understanding of the
wave-breaking process.

Reliable results for truly three-dimensional problems are still relatively rare (e.g.
Isaacson 1982; Romate 1989). Simulations to date have not been completely suc-
cessful, primarily because of limitations on accuracy/resolution which also affect
stability, and computational efficiency and power. In this paper, we extend MEL/BIE
to three dimensions using a high-order quadratic boundary-element method (QBEM).
A problem of immediate interest is the dynamics of three-dimensional overturning
waves. Following Longuet-Higgins & Cokelet (1976), we start with plane progressive
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Stokes waves (fundamental wavelength L) but now apply briefly a three-dimensional
surface pressure (of transverse wavelength W ). Varying the ratio γ ≡ W/L over a
broad range, we perform high-resolution simulations of plunging waves with different
degrees of three-dimensionality. From these simulations, we obtain the detailed wave
kinematics and quantify the three-dimensional effects on the kinematics. Analysis of
the results in the late stages of wave overturning shows that a condition corresponding
to free fall obtains in portions of the plunging tip as evidenced by the vanishing of
normal surface accelerations (relative to gravity) in these regions. Under such free-fall
conditions, accurate simulation becomes difficult and sensitive to (small) numerical
errors, leading eventually to the numerical breakdown of the simulations.

A second steep three-dimensional wave problem of much interest is the often
observed phenomenon of regularly distributed crescent-shaped wave patterns in the
open ocean (Kinsman 1984; Shrira, Badulin & Kharif 1996) and in laboratory basins
(Su et al. 1982; Su 1982). Results on the mechanisms for the development of such
waves still appear inconclusive. Su et al. (1982) speculated that such waves result from
three-dimensional (class II) instability of Stokes waves; while Saffman & Yuen (1980)
and Meiron, Saffman & Yuen (1982) assumed the crescent wave patterns to be steady
three-dimensional bifurcations of Stokes waves. Recently, Shrira et al. (1996) added
non-conservative effects into the model Zakharov equation and obtained a qualitative
prediction of the persistent asymmetric pattern. In any event, since these theories are
based either on linear stability analysis or on weakly nonlinear model equations, it is
unlikely that quantitative comparisons to crescent waves in experiments (which tend
to be quite steep) can be obtained.

In this work, we carry out direct simulations of three-dimensional crescent waves
starting from steep two-dimensional Stokes waves with small class II (three-dimen-
sional) unstable perturbations (according to McLean 1982). Following the fully non-
linear evolutions, we obtain, depending on the initial perturbations, fully featured 1:2
sub-harmonic (L2) and 1:3 sub-harmonic (L3) crescent waves. Significantly, detailed
crescent features and geometry obtained in the simulations compare quantitatively
well with experimental wave basin measurements. These simulations show that the
formation of crescent waves is directly (and possibly solely) a result of fully nonlinear
three-dimensional evolution of unstable Stokes waves.

The paper is organized as follows. In § 2, the initial boundary-value problem as
well as the associated MEL/BIE formulation for general wave–wave and wave–body
interaction problems are presented. In § 3, the development and implementation of
three-dimensional MEL using QBEM is outlined and select validation tests of the
method are presented. In § 4, we perform a systematic numerical study of the dynamics
of three-dimensional breaking waves. The study of crescent wave generation is in § 5.
We conclude in § 6.

2. Mathematical formulation
We consider the general interaction problem of steep waves, with or without the

presence of a (floating) body, in the context of fully nonlinear free-surface potential
flow. The hydrodynamic problem is formulated as an initial boundary-value problem
for the velocity potential which we solve using a mixed-Eulerian–Lagrangian (MEL)
approach employing a high-order boundary-integral-equation (BIE) method.

Cartesian coordinates x = (x, y, z) fixed in space are chosen with the origin at
the undisturbed water level, x and y being the two horizontal directions, and z
the vertical direction, positive upward. For a given characteristic length scale L, all
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variables hereafter are non-dimensionalized by further choosing time and mass units
such that the density of water ρ and the gravity acceleration g are both unity.

2.1. The initial boundary-value problem (IBVP)

The flow is described by a velocity potential φ(x, t) which, for continuity, satisfies the
Laplace equation,

∇2φ(x, t) = 0, x ∈ V(t), (2.1)

where t is time, and V(t) the fluid domain. On a prescribed impervious boundary,
B(t), the normal velocity of the flow equals that of the boundary:

∂φ

∂n
= φn = U (x, t) · n, x ∈ B(t), (2.2)

where n is the unit normal out of B(t) and U the prescribed velocity of B(t). On
the free surface, F(t), the dynamic boundary condition can be written in Lagrangian
form:

Dφ

Dt
= 1

2
|∇φ|2 − z − PF, x ∈ F(t), (2.3)

where D/Dt ≡ ∂/∂t+∇φ · ∇ denotes material derivative and PF the (given) pressure
on F(t). The kinematic boundary condition on F(t) in Lagrangian form is

Dx

Dt
= ∇φ, x ∈ F(t). (2.4)

For deep water, the appropriate far-field condition is

∇φ(x, t)→ 0 as z → −∞. (2.5)

At initial time, t = 0, the free-surface position F(0) and the velocity potential on the
free surface φ(x ∈ F(0)) are given, while B(t) and U (x ∈ B(t), t) are presumed given
(or can be solved) for all t. The IBVP is complete with the imposition of appropriate
radiation conditions in the far field.

2.2. The mixed-Eulerian–Lagrangian (MEL) approach

At any time t, given B(t) and U (x ∈ B(t), t), and F(t) and φ(x ∈ F(t), t), the
boundary-value problem for φ satisfying (2.1) is a generalized Cauchy problem whose
solution is completely determined in terms of values on the boundary only. This lends
itself to a BIE formulation of the MEL approach. This solution procedure involves
two main steps:

I. Given B(t), φn(x ∈ B),F(t) and φ(x ∈ F), solve the boundary-value problem
(BVP) for φn(x ∈ F), and in particular obtain the velocity ∇φ(x ∈ F).

II. Integrate in time the kinematic and dynamic free-surface boundary conditions
(2.4) and (2.3) for F(t+ ∆t) and φ(x ∈ F(t+ ∆t)). Repeat the process.
The approach has three important characteristics: (i) the linear BVP is solved in
step I with the actual (time-exact) boundary at that time step; (ii) the integration
of the nonlinear boundary conditions in time in step II is explicit; and (iii) only
boundary values of the unknown (φ and φn) are involved on account of the elliptic
field equation (2.1). As can be expected, computation time and storage are generally
dominated by step I; while computational complexities, associated for example with
stability of the nonlinear free-surface boundary conditions, are mainly confined to
step II.
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2.3. BIE formulation of the BVP

To formulate the BVP into a BIE, we introduce the Rankine (free-space) Green
function, G(x, x′) = 1/r, where r ≡ |x− x′| and x′ ≡ (x′, y′, z′) is the source point.
Applying Green’s second identity to φ and G and taking the limit x → ∂V, where
∂V is the boundary of V, we obtain the requisite BIE:

α(x)φ(x) +

∫∫
∂V

[φ(x′)Gn(x, x′)− φn(x′)G(x, x′)] dS(x′) = 0, x ∈ ∂V, (2.6)

where the Cauchy principal part of the singular integral is assumed here and hereafter.
In (2.6), the interior solid angle α(x) can be evaluated by

α(x) = −
∫∫

∂V
Gn(x, x

′) dS(x′), (2.7)

which is obtained from (2.6) with a constant φ. For x ∈ B/F, the Neumann/Dirichlet
boundary condition is applied, and (2.6) is a Fredholm integral equation of the
second/first kind.

After obtaining the solution on the boundary from (2.6), the solution in the whole
flow field can be evaluated using

φ(x) =
1

4π

∫∫
∂V

[φn(x
′)G(x, x′)− φ(x′)Gn(x, x′)] dS(x′), x ∈ V, (2.8)

for the velocity potential, and

∇φ(x) =
1

4π

∫∫
∂V

[φn(x
′)∇xG(x, x′)− φ(x′)∇xGn(x, x′)] dS(x′), x ∈ V, (2.9)

for the velocity.

2.4. Far-field boundary conditions

As pointed out earlier, the proper formulation of the IBVP requires some specification
of boundary conditions in the far field. In this paper, our interest is in nonlinear
dynamics of periodic three-dimensional waves. Thus we impose doubly periodic
boundary conditions in the two horizontal dimensions. In this case, the BIE domain
is greatly reduced by introducing the doubly periodic Green function Gp which
satisfies, for a periodic domain of dimensions L by W :

Gp(x− x′, y − y′, z − z′) = Gp(x+ mL− x′, y + nW − y′, z − z′), (2.10)

for any integers m, n. The domain of the BIE (2.6) is then simply F∪B in a single
periodic domain. The doubly periodic Green function Gp can be written as a double
sum of Rankine sources:

Gp =

∞∑
m=−∞

∞∑
n=−∞

{
[(x+ mL− x′)2 + (y + nW − y′)2 + (z − z′)2]−1/2

−[(mL)2 + (nW )2]−1/2
}

+
2πz

LW
, (2.11)

where the last term is included to ensure ∇Gp → 0 as z → −∞. For the evaluation of
GP in (2.11), efficient summation formulas are available (Breit 1991; Newman 1992).
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2.5. Conservation of mass and energy

Global accuracy of the numerical scheme can be checked for conservation of mass
and energy. For mass conservation, the Gauss condition must be satisfied:∫∫

∂V
φn dS = 0. (2.12)

Alternatively, in the vertical direction in the absence of a body, the mean water level
must be invariant:

z̄ ≡
∫∫
F
znz dS = constant (2.13)

where nz is the z-component of n (of F).
If no energy is added to the flow, the total energy of the fluid is invariant. If work

is done by an imposed pressure PF on F or body motion on B, the rate of change
of the total energy is equal to the imposed work done:

d

dt
(Ek + Ep) = −

∫∫
F∪B

pφn dS, (2.14)

where p is the fluid pressure given by the Bernoulli equation, and Ek and Ep are
respectively the kinetic and potential energies:

Ek =
1

2

∫∫
∂V
φφn dS and Ep =

1

2

∫∫
∂V
z2nz dS. (2.15)

3. Numerical method
We address here key issues associated with the numerical implementation of the

MEL/BIE method. In addition, we present convergence tests and results that illustrate
the accuracy/resolution of the method.

3.1. Solution of the BIE

As pointed out earlier, the success of the MEL approach for practical computations
depends very much on the efficacy of the BIE solver for the BVP. Existing BIE solvers
commonly employ piecewise-constant approximations for the unknowns, piecewise-
linear approximation of the boundary, and collocation at panel centroids (see e.g.
Hess & Smith 1964). This so-called ‘constant-panel’ method (CPM) has a number
of shortcomings for the present problem. First, the quadratic convergence of CPM
with panel size ∆` is too slow/expensive for accurate three-dimensional simulations.
Secondly, at intersections of the free surface (‘F’ or Dirichlet) and body (‘B’ or
Neumann) boundaries, CPM fails to converge with decreasing ∆`, in general, if the
boundary slopes are discontinuous (see Xü & Yue 1992). Thirdly, robust treatment of
the F∩B intersection generally requires collocation at the intersection itself (see e.g.
Lin, Newman & Yue 1984; Dommermuth et al. 1988) which however is incompatible
with CPM.

To circumvent the above, higher-order panel or BIE methods must be sought.
After a systematic study of higher-order panels including super- and sub-parametric
elements (order of the geometry representation respectively higher and lower than
that for the boundary unknowns), we selected finally an iso-parametric quadratic
boundary-element method (QBEM). In QBEM, we employ a piecewise bi-quadratic
representation of both ∂V, and φ and φn on ∂V. The boundary panels are now curvi-
linear quadrilaterals or (degenerate) curvilinear triangles with nine and seven nodes
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respectively where boundary positions, and φ and φn values are specified/collocated.
QBEM now obtains quadratic convergence with ∆` even in the presence of F∩B
intersections with discontinuous boundary slopes. Furthermore, boundary nodes at
panel edges provide a robust treatment of boundary intersections. Significantly, for a
given minimax (relative) error, say O(10−3), QBEM is some two orders of magnitude
more efficient than CPM for general applications. The efficiency and accuracy of
the present MEL/BIE implementation is to a large extent a result of the efficacy of
QBEM. Details of the QBEM implementation and performance can be found in Xü
(1992) and Xü & Yue (1992) and are not repeated here.

Upon discretization/collocation of (2.6), we obtain a linear algebraic system which
is in general dense, non-symmetric and, because of the first-kind equations on F, not
diagonally dominant. For O(N) boundary unknowns, direct solution of the system
via Gauss elimination requires O(N3) effort. For the three-dimensional problems we
consider, N ∼ O(104) typically, and direct solution schemes can be quite expensive.
In the present work, we solve the BIE algebraic system using a generalized mini-
mum residual (GMRES) algorithm (Saad & Schultz 1986) with symmetric successive
over-relaxation (SSOR) pre-conditioning. The computational effort of this algorithm
required for the QBEM equations is found to be at most ∼ O(N2.3) (see Xü & Yue
1992).

3.2. Time integration

Once the BVP at each time step is solved and the velocity ∇φ on F obtained from φ
and φn onF, the free-surface boundary conditions (2.3) and (2.4) can be integrated in
time in a straightforward manner. Here, a fourth-order Adams–Bashforth–Moulton
(ABM4) integrator coupled with a fourth-order Runge–Kutta (RK4) scheme for
(re)starting (whenever there is a change in time-step size) is used. ABM4 and RK4
require two and four solutions of the BVP per time step, respectively.

In the simulations, we adopt dynamic time stepping with the time-step size deter-
mined by

∆t 6 Cn(∆l)min/|(∇φ)F|max, (3.1)

where (∆l)min is the minimum distance between two neighbouring nodes on F and
|(∇φ)F|max is the magnitude of the maximum (nodal) velocity on F. Equation (3.1)
can be derived directly from (2.3), with Cn, the Courant number, a computational
parameter to be selected for stability (typically Cn < 1). In practice, it is useful also
to impose minimum and maximum time-step limits: ∆tmin 6 ∆t 6 ∆tmax.

3.3. Removal of saw-tooth instabilities

In the absence of numerical damping in MEL simulations, saw-tooth instabilities
eventually develop on the free surface as nonlinearity increases (e.g. Longuet-Higgins
& Cokelet 1976). The presence of saw-tooth instabilities can be expected in theory
for a nonlinear system without dissipation, wherein energy cascades from low to
high wavenumbers and accumulates at the highest wavenumber associated with the
discretization. However, the appearance of saw-tooth instabilities in the simulation of
breaking waves seems to depend on the BIE formulation. With the Green-theorem
formulation, severe saw-tooth instabilities usually appear near the crests of steep
waves, while no apparent saw-tooth instability effect is observed with the Cauchy-
integral formulation (e.g. Dold 1992). The possible reason for this is that with
the Green-theorem/Cauchy-integral formulation, we encounter the first/second-kind
Fredholm integral equation. Usually, it is easier to obtain an accurate solution to the
second-kind equation than to the first-kind equation.
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QBEM CIM

u w u w

ε Nw ē emax ē emax Nw ē emax ē emax

0.2 8 0.00954 0.02169 0.00660 0.01953 32 0.00478 0.01302 0.00884 0.01801
16 0.00099 0.00178 0.00205 0.00416 64 0.00125 0.00329 0.00225 0.00453
32 0.00016 0.00063 0.00064 0.00170 128 0.00032 0.00082 0.00059 0.00113
64 0.00003 0.00009 0.00017 0.00043 256 0.00008 0.00022 0.00017 0.00030

0.4 8 0.02463 0.05460 0.01165 0.02547 32 0.00388 0.03625 0.01350 0.06765
16 0.00271 0.00914 0.00581 0.02914 64 0.00106 0.01019 0.00378 0.01942
32 0.00027 0.00094 0.00126 0.00640 128 0.00028 0.00261 0.00101 0.00523
64 0.00010 0.00045 0.00055 0.00238 256 0.00007 0.00065 0.00029 0.00132

Table 1. Normalized average (ē) and maximum (emax) errors in the horizontal (u) and vertical
(w) velocities on the surface of a Stokes wave with wavenumber k = 1 and steepness ε. The
three-dimensional QBEM solution uses a non-uniform grid with an average of Nw unknowns per
wavelength while the CIM solution employs a uniform grid.

To remove saw-tooth instabilities, a variety of smoothing techniques can usually
be used (e.g. Dommermuth et al. 1988; Wang, Yao & Tulin 1994). In the present
simulations, we use a second-order thirteen-point Savitzky–Golay type smoothing
filter (Hamming 1983) which is applied every Ns (Ns typically 3 or 6) time steps.

3.4. Convergence tests

The three-dimensional MEL/QBEM code has been tested extensively for accuracy
and convergence. These tests include comparisons to exact (longitudinal and oblique)
Stokes waves, and existing two-dimensional MEL results for overturning waves. For
brevity, only representative results are given here. Extensive validation results can be
found in Xü (1992) and Xue (1997).

To test the QBEM BVP solver, we input the profile and surface potential values
for exact two-dimensional progressive Stokes wave (with wavenumber k = 1 and
steepness ε) and solve for the surface velocity using a three-dimensional QBEM
code. (For the solution of the Stokes wave, we follow Schwartz (1974) but solve the
mapping by direct numerical iterations). Table 1 shows the convergence of QBEM
results of the horizontal (u) and vertical (w) velocities for two wave steepness ε = 0.2
and 0.4. For comparison, we also present results obtained by a Cauchy-theorem-based
approach, which is almost identical to Vinje & Brevig (1981) but differs from Dold &
Peregrine (1986) in free-surface discretization and time integration. For convenience,
we hereafter denote this Cauchy integral method by CIM. The results in table 1 show
that for both QBEM and CIM, the average (ē) and maximum (emax) errors in u and
w decrease quadratically with increasing number of nodes (Nw) per wavelength. For
a given Nw , ē is much smaller than emax. However, for a given accuracy, CIM requires
approximately four times the number of unknowns used in QBEM.

Similar convergence results are obtained when the Stokes wave is oblique to the
QBEM grid. An extensive study of the evolution of such waves on varying Nw , Cn
and Ns were conducted to validate the remaining part of MEL. The details of these
results are omitted for brevity (see Xü 1992).

For more stringent tests, we simulate two-dimensional deep-water overturning
waves using the general three-dimensional MEL/QBEM program. We use a two-
dimensional Airy wave as an initial condition and compare the QBEM simulation to
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Figure 1. Free surface profile at t = 4.02 during fully nonlinear evolution of a two-dimensional
Airy wave of steepness kA = 0.544. Plotted are the results obtained by QBEM (+); CIM (——) and
D. H. Peregrine (personal communication) (- - -). The QBEM solution between two neighbouring
nodes has a quadratic variation with space.

high-resolution CIM results. The initial free-surface elevation and potential are given
by

η(x, t = 0) = A cos kx, φ(x, z = η(x), t = 0) = A sin kx. (3.2)

For the simulation, we choose wavenumber k = 1 and amplitude A = 0.544. For this
value of kA, the wave eventually overturns. For this two-dimensional problem, we
use the three-dimensional QBEM code with one (or two) elements in the (invariant)
transverse direction.

Figure 1 shows the free-surface profiles of the overturning wave near the final stage
of wave breaking (t = 4.02) obtained using QBEM and CIM simulations. The result of
D. H. Peregrine (personal communication), who used the Cauchy-integral approach of
Dold & Peregrine (1986), is also shown for comparison. For the QBEM computation,
we use Nw = 96 free-surface nodes (48 quadratic elements) per wavelength and apply
a thirteen-point Savitzky–Golay-type smoothing every Ns = 6 time steps. The QBEM
simulation conserves the (normalized) total energy to within O(10−4). For the CIM
simulation, we use Nw = 960, ∆t = 0.005 and Ns = 20 (for smoothing) and obtain
energy conservation to within O(10−6). The simulation of D. H. Peregrine, who used
Nw = 192 and no smoothing, conserves the total energy to within O(10−7). (Note
that QBEM simulations can obtain better energy conservation at higher resolution,
but these simulations fail earlier due to numerical effects.) From figure 1, we see that
the results of the overturning wave profile obtained using different approaches agree
each other very well except in a small region near the plunging tip, where the tip by
QBEM appears slightly ahead of the others.

Figure 2 plots the variation of the relative normal acceleration of the free surface
(An) in the neighbourhood of the plunging tip well into the overturning wave devel-
opment (t = 3.41). Here An ≡ (a− g) · n where, at a given free-surface point, a is the
particle acceleration, n the outward unit normal, and g the gravitational acceleration.
For reference, the profile of the plunging tip is also shown. The results of An obtained
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Figure 2. Free-surface profile z(x) (upper graphs) and normal relative free-surface acceleration
An(x) (lower graphs) in the neighbourhood of the plunging tip at t = 3.41, during fully nonlinear
evolution of a two-dimensional Airy wave of steepness kA = 0.544. Plotted are z(x) by QBEM (+),
CIM (——) and D. H. Peregrine (— · —); and An(x) by QBEM (+), CIM (- - -) and Peregrine
(1999) (· · ·). The free-surface profile above/below the plunging tip corresponds to larger/smaller
An. (Note that the x-coordinate is stretched.)

by QBEM, CIM and D. H. Peregrine compare with each other very well. It is seen
that An becomes smaller on moving closer to the plunging tip. All these simulations
show that An remains positive in the plunging tip region and approaches zero during
the final stage of overturning wave development.

The above convergence tests and comparisons to high-resolution computations
of two-dimensional overturning waves provide the guidelines for the choice of
computational parameters for our subsequent QBEM studies of three-dimensional
steep/breaking waves.

4. Dynamics of three-dimensional breaking waves
As a first application, we apply our method to study the dynamics of three-

dimensional overturning waves. Our main objective is to quantify the three-dimensional
kinematics of such waves and the dynamics leading to wave breaking in three dimen-
sions.

4.1. Kinematics of three-dimensional overturning waves

We extend the two-dimensional MEL results of Longuet-Higgins & Cokelet (1976)
for overturning waves to three dimensions. Following their work, we start with a plane
Stokes wave but now apply, for a short time, a three-dimensional surface pressure to
raise the energy density beyond the maximum for a steady (two-dimensional) Stokes
wave.

As initial conditions, we choose the Stokes wave parameters: wavelength L = 2π,
steepness ε = 0.4, period T ∼= 5.806 and phase speed c ∼= 1.082. The imposed surface
pressure has the same temporal (t) and longitudinal (x) dependence as in the fourth



T
h
ree-d

im
en

sio
n
a
l

w
a
ve–

w
a
ve

a
n
d

w
a
ve–

b
o
dy

in
tera

ctio
n
s.

P
a
rt

1
2
1

–0.20 1.170.710.26
u

(a)
z

x

(b)

(c)

(d )

–0.20 0.08–0.01–0.11
v

(a)
z

x

(b)

(c)

(d )

0.18
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(The phase speed of the initial Stokes wave c = 1.082.)
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case studied by Longuet-Higgins & Cokelet (1976), but is now further modulated by
a periodic transverse variation of wavelength W :

PF =

{
p0 cos2(πy/W ) sin t sin(x− ct), 0 6 t 6 π

0, t > π,
(4.1)

where p0 = 0.146. The co-propagating surface pressure increases from 0 at t = 0 to its
maximum amplitude at t = π/2 (t/T ∼= 0.271) and decreases to zero for t > π. Note
that (4.1) is symmetric with respect to y = 0 and ±W/2, so that the unknowns in the
double-periodic domain of L by W can be halved by taking advantage of symmetry.
Physically, the problem can be thought of as one in a wave tank with sidewalls at
any two values of mW/2, m = 0, ±1,±2, . . . . For definiteness, we refer hereafter to
y = 0 where PF = p0 is maximum as the ‘centre’, and y = ±W/2 where PF = 0 is
minimum as the ‘sides’.

The geometric aspect ratio γ ≡W/L provides a measure of the three-dimensionality
of the wave. To illustrate the importance of the three-dimensional effect and the
difference from two-dimensional results, we perform systematic simulations for a
range of γ = 0.5, 0.75, 1.0, 1.25, and 1.5. Based on convergence tests, we employ
65×25 free-surface grids (384 9-node quadratic elements) corresponding to N = 1600
unknowns for half of the computational domain, [0, L] × [−W/2, 0]. The Courant
number is set to be Cn = 0.6 for t 6 π and Cn = 0.4 for t > π. Thirteen-point
Savitzky–Golay-type smoothing is applied every Ns = 3 time steps. The initial free-
surface Lagrangian points are distributed non-uniformly according to the curvature
of the Stokes waves and are followed throughout the simulation without regridding.
The energy loss due to smoothing is less than 0.01% for the entire simulation. The
simulation (with N = 1600) uses O(5) minutes (single processor) CPU time on a
CRAY-YMP supercomputer for each time step.

Figures 3, 4, and 5 show the free-surface profiles and particle velocity components u,
v, w, near the final stages of the three-dimensional overturning waves, for γ = 1.5, 1.0,
0.75 and 0.5. The free-surface profile, u and w are symmetric while v is antisymmetric
about the centreline y = 0. The results for different values of γ can be qualitatively
quite different. In particular, the three-dimensional wave plunging occurs near the
centre (where the pressure forcing was maximum) for γ = 1.5 and 1.0; for γ = 0.5, the
plunging wave develops near the side (where the forcing was minimum). For γ = 0.75,
the plunging tip is located between the centre and the side of the tank.

This seemingly surprising result can be explained heuristically by a qualitative
consideration of the period of transverse wave sloshing in the ‘tank’. According to
linear theory, the sloshing period of the first-mode transverse wave is given by

TW/TL = [1 + γ−2]−1/4, (4.2)

where TL(= 2π here) is the linear longitudinal period. This corresponds to TW/TL '
0.912, 0.841, 0.775, 0.669 for γ = 1.5, 1.0, 0.75, 0.5 respectively. Assuming that
a transverse wave in phase with (4.1) is established when the applied pressure is
removed (at t1 = π), the sloshing wave will reach a maximum amplitude at the
sidewalls at t2 ' t1 + TW/2 = 1.035T , 0.997T , 0.961T , 0.903T for γ = 1.5, 1.0,
0.75, 0.5, respectively. For γ = 1.5, 1.0 and 0.75, the computed plunging times (which
depend in general on the energy input and the nonlinear dynamics) are at t/T = 0.84,
0.85 and 0.86, which are appreciably less than t2. For γ = 0.5, however, this plunging
time is t/T = 0.88, which is close to the arrival of the cross-mode crest at the sidewall.
Thus, the plunging locations in figures 3–5 can be qualitatively explained. Since the
breaking location depends in general on the balance between the transverse dynamics
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and the nonlinear development of the plunging wave, an important consequence
is that three-dimensional breakers need not develop directly behind the region of
maximum (surface or bottom) forcing.

The sequence of development in time of the plunging wave profiles and surface
velocity components u, v, w is shown in figure 6 for γ = 1.5. When the surface
forcing is turned off at t = π, the deviation from the two-dimensional Stokes wave
is relatively small, although three-dimensional features of this ‘initial’ condition are
evident. As the wave steepens and the free surface eventually plunges forward and
overturns, the horizontal velocity u on the centreline increases to almost three times its
initial value. In contrast, changes in the magnitudes of the maximum and minimum
vertical velocity w as the plunging wave develops are insignificant. Overall, the ratio
of maximum u to maximum w, (u/w)m, increases from an initial value of 1.4 to 3.5 as
the wave overturns. Thus, wave overturning is primarily a result of the longitudinal
motion.

The relatively short time to breaking (relative to transverse oscillation period) in
this case does not allow significant energy transfer from the centre to the sides. This is
seen in figure 6 for the surface v. By virtue of symmetry, v vanishes at y = 0,±W/2,
and is only non-zero in between. This transverse velocity is positive (towards the
plunger at the centreline) on the front face, and negative near and behind the wave
crest. At the final time instant shown, the ratio of maximum u to v for this value of
γ = 1.5 is (u/v)m = 20.1 and the overall effect of the transverse velocity is small.

Finally, we plot in figure 7 representative surface streamlines at the late stage of
wave plunging (t/T = 0.85) for the case γ = 1.0. Here the longitudinal velocity is
defined relative to the phase velocity of the initial Stokes wave (c = 1.082). The
contour of v on the wave surface is also shown. In the region of wave overturning,
there is a strong transverse flow toward the side (y = −W/2) while the plunging tip,
which is (nearly) the highest point of the wave, is near the centre (y = 0). Note that
the longitudinal velocity (u) exceeds the wave phase speed c near the plunging tip (for
clarity, the streamlines are omitted in a small region near the tip).

4.2. The effect of three-dimensionality

In this section, we address the effect of three-dimensionality. Our interest is to
obtain direct comparisons of wave characteristics such as profiles, velocities and
accelerations, and kinetic and potential energies, for plunging waves with different
three-dimensionality parameter γ. To do this, it is useful to define a reference time t∗
at which such comparisons can be made. One choice is t∗ = tv , the instant at which
the free surface first becomes vertical. In these simulations, however, tv occurs at a
relatively early stage of the plunging wave development. For t > tv , the plunging
wave kinematics continues to change rapidly. A more useful choice is to define t∗ to
be the instant at which the condition of free fall (An ≈ 0) at the plunging tip first
obtains. (For definiteness, we define t∗ to be given by (An)min(t∗) = 0.02, say, where
(An)min is the minimum value of An on the entire free surface.) At the tip region for
t ≈ t∗, the longitudinal velocity has effectively reached its maximum value, while the
(subsequent) vertical velocity is predictable given essentially by the condition of free
fall. While this choice of t∗ is by no means unique, it is a pragmatic one since it is
a late time we can (quantitatively) identify beyond which the good fidelity of our
numerical simulation cannot be guaranteed.

Table 2 gives the time t∗, and the plunging tip position and velocity at that instant
for three-dimensional overturning waves with a range of the three-dimensionality
parameter γ. Here the tip is defined to be the point where An = (An)min = 0.02 at
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F 6. Distributions of the surface velocity components u, v and w for ç = 1.5. The results
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w at (e) t/T = 0.541 and ( f ) 0.840. (The phase speed of the initial Stokes wave c = 1.082.)
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γ 0.50 0.75 1.00 1.25 1.50 ∞
t∗/T 0.879 0.861 0.849 0.842 0.839 0.813

Xtip 6.234 6.313 6.328 6.316 6.313 6.080
Ytip −1.312 0.000 0.000 0.000 0.000 0.000
Ztip 0.695 0.755 0.749 0.725 0.707 0.660

|Vtip| 1.665 1.487 1.618 1.708 1.751 1.771
utip 1.633 1.474 1.613 1.706 1.751 1.771
vtip −0.304 0.000 0.000 0.000 0.000 0.000
wtip 0.112 0.180 0.115 0.060 0.005 −0.035

Table 2. Time t∗ (normalized by the fundamental period of the initial Stokes wave T = 5.806),
and the tip position (Xtip, Ytip, Ztip), amplitude of the tip velocity Vtip and its three components
(utip, vtip, wtip), at t = t∗, of overturning waves for a wide range of γ values.

z y

x

0.05

–0.26

–0.01

–0.08

–0.14

–0.20

Figure 7. Surface transverse velocity (v) contours and surface streamlines with velocity relative to
the phase velocity of the initial Stokes wave (c = 1.082). The results plotted (for y = [0,−W/2])
are for γ = 1.0 at t/T = 0.85.

t = t∗. For comparison, the corresponding values for a two-dimensional overturning
wave (corresponding to γ = ∞) are also given. It is observed that t∗ for the three-
dimensional wave is always larger than that for the two-dimensional wave, and that
t∗ decreases uniformly as γ increases. This confirms the general expectation that
breaking of a three-dimensional wave would take longer to develop.

As a result of the larger t∗, Xtip and Ztip are generally greater for the three-
dimensional overturning wave than in the two-dimensional case. For small γ (< 0.75),
Xtip and Ztip increase with γ while Ytip is negative as a result of shift of wave breaking
from the centre to the side. Beyond this value of γ, Xtip, Ztip approach the two-
dimensional values monotonically as γ increases, while Ytip = 0 (wave breaking at the
centre).
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γ 0.50 0.75 1.00 1.25 1.50 ∞
Vmax 1.885 1.536 1.748 1.859 1.921 1.846

(Vx)max 1.875 1.500 1.742 1.859 1.920 1.831
(Vy)max 0.056 0.043 0.056 0.059 0.056 0.000
(Vz)max 0.748 0.591 0.678 0.710 0.721 0.692

Vmin 0.260 0.268 0.255 0.249 0.246 0.327
(Vx)min −0.295 −0.305 −0.321 −0.328 −0.331 −0.336
(Vy)min −0.321 −0.371 −0.268 −0.199 −0.160 0.000
(Vz)min −0.453 −0.398 −0.410 −0.413 −0.413 −0.428

Amax 3.587 2.552 3.210 4.102 5.073 3.988
(Ax)max 3.224 2.201 2.720 3.119 3.368 3.682
(Ay)max 0.383 0.128 0.079 0.060 0.049 0.000
(Az)max 0.511 0.386 0.406 0.427 0.442 0.494

Amin 0.089 0.063 0.085 0.057 0.044 0.247
(Ax)min −0.425 −0.402 −0.388 −0.388 −0.392 −0.365
(Ay)min −0.252 −0.750 −0.667 −0.573 −0.506 0.000
(Az)min −2.224 −1.873 −2.571 −3.861 −4.934 −2.941

ηmax 0.811 0.761 0.758 0.746 0.735 0.696
ηmin −0.266 −0.259 −0.263 −0.266 −0.269 −0.286

ηmax − ηmin 1.077 1.020 1.021 1.011 1.004 0.983

Table 3. Maximum (( )max) and minimum (( )min) values on the free surface of the velocity amplitude,
V , and velocity components, Vx, Vy , Vz; acceleration amplitude, A, and acceleration components,
Ax, Ay , Az; and wave elevation, η, at t = t∗, of overturning waves for a wide range of γ values.

The tip velocity amplitude |Vtip| is generally smaller than the two-dimensional value.
|Vtip| generally increases with γ except for very small γ where the transverse sloshing
can significantly increase the magnitude of the tip velocity. The behaviour of Vtip is
dominated by its longitudinal component utip which is an order of magnitude larger
than the transverse and vertical velocities vtip and wtip. For three-dimensional plunging
waves, wtip is positive and decreases monotonically with increasing γ for γ > 0.75. On
the other hand, wtip is negative for the two-dimensional case. This is consistent with
the larger value of Ztip for the three-dimensional case. The transverse tip velocity vtip

for the three-dimensional wave is generally negligible except for the case of small γ
where it is negative as a result of the shift of the plunging tip from the centre to the
side. (Note that for the case γ = 0.50, vtip 6= 0 since the tip is close to, but not exactly
on, the side.)

Table 3 displays the maximum and minimum values of the velocity and acceleration
amplitudes and components on the free surface at the time t∗. Note that the plunging
wave Vmax is substantially greater than the phase speed of the initial Stokes wave
(c ∼= 1.082). Vmax usually occurs at a point near the tip but not at the tip. Compared
to Vtip, Vmax is about 10% larger. From the simulations, Vmax is achieved at the centre
for γ > 1.0 and on the side for γ = 0.5. For γ = 0.75, which is a transitional case, Vmax

occurs between the centre and the side. Unlike Vtip, Vmax of the three-dimensional
wave can be greater than that of the two-dimensional wave. Similarly to utip, (Vx)max

is much larger than (Vy)max and (Vz)max and behaves similarly to Vmax. Due to the
effect of transverse sloshing, (Vz)max varies inversely with |(Vy)min|. Thus there is a
strong energy and momentum transfer from the vertical to transverse motion in the
development of the three-dimensional overturning waves.
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Figure 8. Free-surface profiles of two- and three-dimensional overturning waves at the time t∗ on
(a) the centre-plane; and (b) the side for: γ = ∞ (——); γ = 1.5 (- - -); γ = 1.25 (— · —); γ = 1.0
(· · ·); γ = 0.75 (– – –); and γ = 0.5 (— · · —).

The variation of the maximum free-surface acceleration magnitude Amax with γ
is similar to that of Vmax. Amax usually occurs under the tip at the front face of
the overturning wave and reaches values of O(5g). Amax of the three-dimensional
overturning wave can be larger or smaller than the two-dimensional result, depending
on γ. Specifically, for γ > / < 1.25, Amax is greater/smaller than that of the two-
dimensional value. This behaviour of Amax is seen to be strongly correlated with the
magnitude of (Az)min. For longitudinal free-surface acceleration, (Ax)max is generally
smaller in the presence of three-dimensionality. In the transverse direction, there is
appreciable Ay primarily associated with the sloshing motion towards the side (as
reflected in larger |(Ay)min| values).

The dependence on γ of the maximum and minimum wave elevations ηmax, ηmin

and wave height h ≡ ηmax − ηmin at t∗ is also shown in table 3. In general, h and ηmax

of the three-dimensional overturning wave exceed those of the two-dimensional case.
Both h and ηmax are seen to decrease uniformly as γ increases. For small γ, the three-
dimensional h can be about 15% larger than the two-dimensional value. For ηmin,
there is no significant difference between the two-dimensional and three-dimensional
cases.

The free-surface profiles of the overturning wave on the centre- and side-planes
at the time t∗ are shown in figure 8 for different γ. Except for γ = 0.5 where wave
breaking occurs near the side, three-dimensional waves break with higher tip/crest at
the centre-plane than the two-dimensional wave. Careful examination of the centre-
plane profiles reveals that the γ = 1.25 case has a profile shape most similar to
the two-dimensional plunging wave. For γ < / > 1.25, the overturning waves have
less/more arced (concaved) front faces than for the two-dimensional case.

Two main factors affect the development of the overturning profile. One is the
nonlinear free-surface focusing from both the longitudinal and transverse directions.
This explains why the three-dimensional wave can be more energetic on the centre-
plane. The other is transverse sloshing which spreads the energy from the centre-plane
to the side. For γ < / > 1.25, the second/first factor dominates resulting in less/more
forward-face concaved centre-plane profiles.

The sidewall profiles (figure 8b) show the wave breaking there of the γ = 0.5
case. The concentration of energy here results in much higher crest/tip than the
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E ≡ Ek + Ep, normalized by the total energy of the initial Stokes wave E0, for: γ = ∞ (— · —);
γ = 1.5 (- - -); and γ = 0.5 (——).

two-dimensional overturning wave. The large t∗ also results in a more forward profile
position. For larger γ (> 0.5), the sidewall profiles are lower and non-breaking.

Figure 9 shows the evolution of the kinetic energy Ek , potential energy Ep and
total energy E ≡ Ek + Ep (in the entire computational domain), normalized by the
total energy of the initial Stokes wave E0, for γ = ∞, 1.5, and 0.5. The other γ cases
are considered but not shown here for clarity as results are similar. With the surface
pressure forcing given by (4.1), Ek and Ep in the three-dimensional case are only
weakly dependent on γ. Due to transverse modulation in (4.1), these values are, as
expected, smaller than those of the two-dimensional wave (γ = ∞). At the initial
stage, under the imposition of the free-surface pressure, Ek , Ep and E increase with
time. At t ∼= 3.14, the pressure forcing is removed, and both Ep and E reach their
maxima. Beyond this time, E remains constant while Ep decreases as Ek grows until
the final stage of wave breaking.

The role of wave energy in the development of wave overturning can be better
understood by examining the ratio between the kinetic-energy increase ∆Ek and the
potential-energy increase ∆Ep (from the initial time). Figure 10 plots the results at the
time t∗ as a function of γ. It is seen that ∆Ek/∆Ep of the three-dimensional overturning
wave is smaller than the two-dimensional result with ∆Ek/∆Ep increasing with γ and
approaching the two-dimensional value for large γ. Thus the three-dimensional wave
breaks with a larger potential energy increase but is less kinetically energetic relative
to the two-dimensional case. This is consistent with earlier results that the three-
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Figure 10. Ratio between the increases in the kinetic and potential energies ∆Ek and ∆Ep at the
instant t∗ of the three-dimensional overturning wave as a function of γ. The two-dimensional result
is also plotted (- - -).

dimensional breaking wave has larger wave height but smaller tip velocity than the
two-dimensional wave.

We remark that the above characteristics of three-dimensional overturning waves
are obtained for a particular class of such waves, namely those obtained with a short-
duration artificial surface pressure forcing specified by a three-dimensional parameter
γ. Our choice of this scenario is motivated by the seminal work of Longuet-Higgins &
Cokelet (1976) for the two-dimensional plunging wave. The features and conclusions
we find can also be obtained for deep-water overturning waves generated via other
mechanisms. One such mechanism is the steepening to breaking of a (transversely
modulated) large-amplitude wave given initially by (linear) Airy theory (e.g. Schultz
et al. 1994). The similarity of the overall features are confirmed by our systematic
simulations also of that case (see Xue 1997, for details). The results are indeed quite
similar and are not repeated in this paper.

5. Crescent waves
In this section, we investigate the mechanism for the generation and development

of three-dimensional steep crescent waves (also called ‘horseshoe’ waves) observed in
wave basins and open ocean (e.g. Su et al. 1982; Kinsman 1984). Postulating that such
waves are the direct result of nonlinear three-dimensional wave interactions, we study
the fully nonlinear evolution of large-amplitude plane Stokes wave subject to small
initial three-dimensional perturbations. Specifically, we consider three-dimensional
perturbations obtained from linear instability analysis of plane Stokes waves (McLean
1982), in particular, the (most) unstable class II (three-dimensional ) mode(s). We per-
form systematic simulations to obtain the long-time three-dimensional fully nonlinear
development of such a wave train. We find that steep crescent waves, similar to those
observed in experiments, arise naturally from such nonlinear evolutions. Specifically
we find both L2 and L3 crescent waves which compare quantitatively well with
the experimental measurements of Su et al. (1982). This is contrary to Shrira et al.
(1996), who suggest that the inclusion of non-conservative effects is necessary for the
development of such waves.

We start the simulations with a train of exact plane Stokes wave (Schwartz 1974),
propagating in the +x-direction, with fundamental wavelength L = 2π/k, steepness
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kA, and phase such that the maximum elevation is at x = 0 at t = 0. We then
consider initial three-dimensional perturbations to the free-surface elevation and
velocity potential (η′ and φ′) given by a single sinusoidal wave component:

η′ = εA sin (kxx+ β) cos kyy, (5.1)

φ′ = − εA

(k2
x + k2

y)
1/4

cos (kxx+ β) cos kyy exp [(k2
x + k2

y)
1/2z] on z = η̄, (5.2)

where ε is the small parameter measuring the amplitude of the disturbance and η̄
is the free-surface elevation of the undisturbed Stokes wave. Here the wavenumbers
(kx, ky) = (p + k, q), where p and q are the longitudinal and transverse perturbation
wavenumbers (cf. McLean 1982). In the above, β is the phase of the perturbation
which we vary in later simulations.

We set k = 1 for the Stokes wave. For computations, we use a rectangular domain
given by x ∈ [0, L/p] and y ∈ [−L/(2|q|), 0] (due to transverse symmetry of the
problem, only half of the y domain is needed). Based on earlier convergence tests
and the required resolution for the crescent wave features, we employ 40 nodes
(corresponding to 20 quadratic elements) per wavelength in both longitudinal and
transverse directions. For time integration, dynamic stepping with Courant number
Cn = 0.4 is used. With these numerical parameters, the total energy is conserved to
O(0.01%) in the simulations.

5.1. Development of L2 crescent waves

To simulate a L2 crescent wave case, we choose kA = 0.33 (for this steepness, the
fundamental period is T ∼= 5.951) for the Stokes wave; and ε = 0.16, (kx, ky) =
(1.5, 1.23) (kx = 1.5 corresponds to p = 1/2), and β = 0 for the initial three-
dimensional perturbation. According to McLean (1982), the latter corresponds to the
dominant component of the most unstable (p = 1/2 sub-harmonic class II) mode for
this kA.

Figure 11 shows a representative sequence of free-surface profiles during the non-
linear evolution. Figure 11(a) shows the initial perturbed Stokes wave profile. With
β = 0, the elevation perturbation is zero at the crests but is discernible (though very
small) elsewhere. As will be shown later, the choice of β does not affect the overall
development of the L2 crescent wave. At t ∼ T/2, figure 11(b), clear three-dimensional
wave features have developed. At this stage, the largest wave slope occurs on the
back faces of the Stokes wave.

At t ∼ T , figure 11(c), a distinct crescent shape of the waves can be observed. Along
the Stokes wave crest line, forward fronts of the crescents have sharper crest angles
than the edges (where two crescents meet). Even at this early stage, the staggered
row-shift crescent pattern has already been formed. As the evolution continues, the
crescent shape becomes more rounded. Interestingly, the crescent pattern is seen to
weaken a bit at t ∼ 2T , figure 11(d).

At t ∼ 3T , figure 11(e), the crescent wave development regains strength: the
trough now becomes deeper, and the crest becomes sharper. Meanwhile, the edges
of the crescent lines are seen to extend further in the −x-direction. At t ∼ 4T ,
the development appears to reach a quasi-steady state. This steady state lasts for
about two periods (cf. figure 11f, g at t/T ≈ 4.3, 5.0 respectively). At this state,
the sharp-crested round semi-circular and staggered row-shifted crescent crests are
well-formed.

As the evolution continues further, the quasi-steady state of t/T ∼ 5 with the
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Figure 11. Free-surface patterns during the nonlinear evolution of a plane Stokes wave of steepness
kA = 0.33 (fundamental period T = 5.951), with three-dimensional initial disturbance given by
ε = 0.16, (kx, ky) = (1.5, 1.23) and β = 0 at (a) time t/T = 0; (b) 0.635; (c) 1.078; (d) 2.002;
(e) 3.172; (f) 4.338; (g) 4.955; and (h) 5.641.

rounded crescent wave pattern is lost. The crescent crest sharpness is diminished and
the deep trough regions flatten up. Meanwhile, steep triangular ‘Delta’ (∆) regions
appear in front of the crescent forward fronts. The flattening of the trough and rising
of the Delta region eventually cause the crescent crests to break in the form of spilling
waves on the shoulders of the crescent wave. Figure 11(h) shows a typical L2 crescent
wave pattern just before breaking.

To show the Delta region and the steep/breaking crescent wave shoulder more
clearly, figure 12 plots the contours of the free-surface elevation at the same instant
as figure 11(h). The distinct features of flattened troughs, steep shoulders, and steep
Delta regions in front of the crescent crests are clearly shown.
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Figure 12. Free-surface elevation contours of the crescent wave in figure 11(h) (t/T = 5.641).
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Figure 13. Time histories of the free-surface elevations along the line x = 0 with y = y1 (— · —); y2

(- - -); and y3 (——) obtained from simulation (kA = 0.33, ε = 0.16, β = 0, and (kx, ky) = (1.5, 1.23)).

The nonlinear three-dimensional evolution leading to the L2 crescent wave de-
velopment can be seen more quantitatively from time histories of the η at given
x position (say the Stokes wave crest x = 0) and different transverse locations.
Figure 13 plots η(x = 0, yi, t) at 2yjq/L = −1, −0.5, 0, for j = 1, 2, 3, correspond-
ing respectively to the edge, shoulder and forward front of the (x ≈ 0) crescent
wave crest. The evolutions η(x = 0, y1, t) and η(x = 0, y3, t) both display alternating
variations in time in amplitude and period. For each profile, the greater amplitude
is associated with the smaller period and vice versa. This type of anti-correlation
between the amplitude and period is a direct result of nonlinear wave dispersion.
Comparing the y1 and y3 profiles, the greater amplitude/period in one coincides with
the smaller amplitude/period in the other, which is consistent with the staggered
row-shifted crescent crest feature. The η(x = 0, y2, t) evolution has nearly constant
period and amplitude and is qualitatively similar to that of the plane Stokes wave
itself.

It is useful to obtain a measure of the growth rate of the initial three-dimensional
perturbation leading to the development of the crescent waves. Following Longuet-
Higgins & Cokelet (1978), we define a root-mean-square growth rate R(t) for the
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Figure 14. Growth rate R(t) of the initial disturbance in the evolution of a perturbed Stokes wave
(kA = 0.33, ε = 0.16, β = 0, and (kx, ky) = (1.5, 1.23)) from fully nonlinear simulation (——) and
linear instability theory of Mclean (1982) (- - -).

total disturbance:

R(t) ≡


∫∫
F

[η′(x, y, t)]2 dx dy∫∫
F

[η′(x, y, 0)]2 dx dy


1/2

, (5.3)

where F is the horizontal (periodic) domain. Figure 14 plots the time history of R(t)
from the simulation compared to the linearized theoretical result for the most unstable
class II mode (Mclean 1982). The present fully nonlinear simulation result agrees very
well with the prediction of the instability analysis. This supports the contention that
crescent waves are a direct result of nonlinear wave evolution initiated by (class II)
instability of Stokes wave in the absence of other physical effects.

The qualitative features in figures 11, 12 and 13 compare extremely well with
observed crescent waves in experiments (e.g. figure 11 with figure 10 of Su 1982; and
figure 13 with figures 13a, g, m of Su 1982). As an illustration, figure 15 compares a
wave basin aerial photograph of a L2 crescent wave (figure 17 of Su et al. 1982) with
the simulated result in figure 11(h) (at t/T ≈ 5.641). For the sake of comparison, the
simulation result is rotated to match the perspective of the wave basin photograph.
The resemblance is quite remarkable. The simulated L2 crescent wave possesses all the
notable features observed in the basin experiment, including the fully extended semi-
circular crests, staggered row-shift crescent pattern, flattened troughs, rising Deltas,
and steep crescent wave shoulders. Remarkably, although the (initial) disturbance
in the simulation most likely differs from that in the physical experiment, the time
durations required for the full development of the L2 wave with the distinct crescent
wave features in both simulation and experiment are quite close (t/T ∼ 5).

We now turn to quantitative comparisons of the crescent wave features to experi-
ments. Figure 16 shows longitudinal surface profiles (at y = y1 and y2 at t/T = 4.338)
wherein the characteristic length and height parameters (according to Su 1982) are
also labelled. Figure 16(a) shows typical L2 feature of alternating peak and trough,
while figure 16(b) on y = y2 displays a (steepened) Stokes-wave-like regular profile.
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Figure 15. Comparison of an L2 crescent wave train: (a) observed in a wave basin (figure 17 of Su
et al. 1982, reproduced with permission); and (b) in simulation (at t/T ≈ 5.641 cf. figure 11h).
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Figure 16. Longitudinal profiles of the L2 crescent wave on the planes (a) y = y1 and (b) y2 at
t/T = 4.338 obtained from simulation (kA = 0.33, ε = 0.16, β = 0, and (kx, ky) = (1.5, 1.23)).
Characteristic length and height parameters according to Su (1982) are labelled in (a).

These spatial variations are consistent with the observations made in figure 13 from
the time histories.

Table 4 shows comparisons of the characteristic crescent wave geometric param-
eters at four representative times in the simulation with t/T ∈ (3, 5) during which
quasi-steady state approximately occurs. The agreements between simulation results
and experimental measurements of Su (1982) are very good for the wave height ratios
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Experiment Simulation

Su (1982) t/T = 3.171 t/T = 4.338 t/T = 4.955 t/T = 5.150

λ2/λ1 1.28 1.05 1.07 1.03 1.17
h11/h12 1.10 1.18 1.09 1.18 1.26
h21/h22 0.88 0.81 0.88 0.80 0.75
h11/h21 1.66 1.49 1.64 1.63 1.60
smax 0.65 0.45 0.64 0.69 0.51

Table 4. Comparisons of geometric parameters of L2 crescent waves between the present simulation
(kA = 0.33, ε = 0.16, β = 0, and (kx, ky) = (1.5, 1.23)) and the experimental measurements of Su
(1982).

h11/h12, h21/h22, and h11/h21, and the maximum local wave steepness smax. The com-
parisons are particularly good at t/T = 4.338 and 4.955 when the L2 crescent features
are fully developed. The comparison of the wavelength ratio λ2/λ1 is acceptable but
not as good as the other parameters. This is probably due to a lower accuracy in
measuring wavelengths in the experiments.

5.2. Dependence of L2 crescent wave development on physical parameters

We investigate the effects of the physical parameters of the problem on the develop-
ment of the L2 crescent waves.

As expected from physical reasoning, the precise phase β of the initial disturbance
should have little effect on the eventual development of the L2 wave. This is confirmed
by direct simulation of the same problem (kA = 0.33, ε = 0.16, (kx, ky) = (1.5, 1.23))
with β = π/2, which produces visually indistinguishable L2 wave results from the
earlier β = 0 case.

For a given Stokes wave steepness, kA, the initial disturbance amplitude ε can
have a qualitative effect on the subsequent L2 wave development. As expected, for
relatively small kA (say 0.33 of § 5.1), the effect of a smaller ε is merely to increase
the evolution time for L2 development. For steeper initial Stokes waves, however,
the magnitude of ε can also change the nature of crescent wave breaking. Figure 17
shows the final stages of L2 wave simulation for a larger kA = 0.4 with two different
initial disturbance amplitudes ε. For a smaller value of ε = 0.04, figure 17(a), the
breaking at the crescent shoulder is that of wave spilling similar to that seen in § 5.1.
For a larger value of ε = 0.16, figure 17(b), the breaking at the crescent is more
characteristic of a plunging wave.

The longitudinal direction of propagation of the initial disturbance relative to the
underlying Stokes waves has a strong effect on crescent wave formation. Results
so far are for positive kx (co-propagating disturbance and carrier waves). Figure
18 shows the growth rate R(t) of an initial disturbance with negative kx = −1.5
(kA = 0.33, ε = 0.16, ky = 1.23, β = 0). In contrast to figure 14 for positive
kx = 1.5, R(t) for the counter-propagating disturbance displays similar (but slightly
larger amplitude) oscillations but without increase in the mean value. The oscillation
period is approximately 0.37T which corresponds to the encounter frequency of the
disturbance moving on the carrier wave. Detailed analysis of the surface patterns in
this case (not shown here, see Xue 1997 for details) shows that fully developed crescent
waves do not form but rather the free surface displays a limit-cycle recurrence from
almost two-dimensional to somewhat three-dimensional waves corresponding to the
minima and maxima respectively of R in figure 18.
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Figure 17. Differences in the L2 crescent wave shoulder breaking pattern during the final stages of
fully nonlinear simulation of a perturbed Stokes wave (kA = 0.4, (kx, ky) = (1.5, 1.23), β = 0) and
initial three-dimensional disturbance amplitude (a) ε = 0.04; and (b) 0.16.
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Figure 18. Growth rate R(t) of the initial disturbance in the evolution of a perturbed Stokes
wave (kA = 0.33, ε = 0.16, β = 0, and (kx, ky) = (−1.5, 1.23)). The disturbance has a longitudinal
propagation in a direction opposite to the Stokes wave.

In summary, it is seen that nonlinear evolutions of (linearly) unstable three-
dimensional (class II) modes co-propagating on a steep Stokes wave train provide a
sufficient and effective mechanism for the development of crescent waves under broad
conditions.

5.3. L3 crescent waves

In Su (1982), under natural conditions, it is reported that of the crescent waves
observed, L2, L3 and L4 configurations occur respectively approximately 90%, 10%
and 1% of the time. The preceding results suggest that similar mechanisms can be
employed to obtain these other crescent wave configurations.

As a demonstration, we obtain the L3 crescent configuration by nonlinear sim-
ulation of a Stokes wave with initial three-dimensional disturbance corresponding
to a (linearly) unstable sub-harmonic mode with p = 1/3 (i.e. kx = 4/3). Figure 19
plots a representative stage in the development of L3 crescent waves of such a case
(kA = 0.33, ε = 0.12, (kx, ky) = (1.33, 1.23), β = 0). The three-row staggered structure
of the L3 crescent wave pattern is clearly shown, which compares well qualitatively
to observations of such waves in the tank (e.g. Su 1982, figure 11). Our simulations
indicate that, unlike the L2 crescent pattern, such an L3 pattern is non-stationary
relative to the Stokes carrier. Furthermore, the L3 configuration is characterized by
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Figure 19. Free-surface wave pattern at t/T = 4.198 during the fully nonlinear evolution of
a Stokes wave (kA = 0.33, T = 5.951) with an initial three-dimensional disturbance (ε = 0.12,
(kx, ky) = (1.33, 1.23), β = 0). The consecutive crest rows corresponding to the original Stokes wave
are labelled.

different crescent crest shapes at different rows. This is indicated by the ‘high-high-
low’ (HHL) pattern of wave crest amplitudes in figure 19. All these features match
well experimental observations of L3 crescent waves (Su 1982).

6. Conclusions
We develop a mixed-Eulerian–Lagrangian method using a robust quadratic-

boundary-element technique efficacious for the study of fully nonlinear three-
dimensional wave–wave and wave–body interactions. Using this method, we in-
vestigate: (i) the nonlinear dynamics of three-dimensional plunging waves; and (ii)
the mechanism for the formation of steep crescent waves. Wave–body interactions
are described in the accompanying Part 2 of this work.

For three-dimensional breaking waves, we initially apply a free-surface pressure of
transverse wavelength W on a Stokes wave of wavelength L, resulting, under broad
conditions, in a three-dimensional plunging wave. We obtain simulations for a wide
range of the three-dimensional parameter γ ≡ W/L and quantify, as a function of
γ, properties such as wave profiles, (surface) velocities and accelerations, and kinetic
and potential energies.

Using direct simulations, we show that the nonlinear evolution of unstable three-
dimensional (class II) disturbances on a steep Stokes wave leads to the development
of characteristic crescent wave features. We obtain detailed descriptions of such waves
which compare well qualitatively and quantitatively with experimental observations.
The excellent comparisons rule out the necessity of physical effects other than those
in the problem we consider.

Our study indicates that simulations are useful and practical for the understanding
of three-dimensional fully nonlinear wave dynamics.

This research is supported financially by grants from the Office of Naval Research
whose sponsorship is gratefully acknowledged. We would like to especially acknowl-
edge the valuable input from a referee which substantially improved the presentation
of § 4.
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